N(d2), GBM, binary call valuation – intuitive

It’s possible to get an intuitive feel for the binary call valuation formula.
For a vanilla European call, C = … – K exp(-Rdisc T)*N(d2)
N(d2) = Risk-Neutral Pr(S_T > K). Therefore,
N(d2) = RN-expected payoff of a binary call
N(d2) exp(-Rdisc T) — If we discount that RN-expected payoff to Present Value, we get the current price of the binary call. Note all prices are measure-independent.
Based on GBM assumption, we can *easily* prove Pr(S_T > K) = N(d2) .
First, notice Pr(S_T > K) = Pr (log S_T > log K).
Now, given S_T is GBM, the random variable (N@T) 
   log S_T ~ N ( mean = log S + T(Rgrow – σ^2)  ,   std = T σ^2 ). 
Let’s standardize it to get
   Z := (log S_T  – mean)/std    ~  N(0,1)
Pr = Pr (Z > (log K  – mean)/std ) = Pr (Z < (mean – log k)/std) = N( (mean – log k)/std)  = N(d2)
Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s